DENKTECH
| Home | Products | Tools | Downloads | Contacts |
Products > Software > IAPACK

IAPACK

The interferogram analysis package uses Python script language. This package contains a set of scripts that can be used for interferogram capture and analysis. It extends Python with C control and mathematical modules to provide a fast image capture and short calculation time. Scripts are very flexible and designed for easy integration into a laboratory or workshop automatic optical measuring systems.

dtmath

C Python extension package for interferogram analysis implements basic calculation algorithms.

Functions

roundmask ( r, w, h )
   Make round mask.

Parameters:
   r - normalized mask radius, flat in range from 0. to 1.
   w - width, positive integer
   h - height, positive integer

Return values:
   mask - mask, numpy bool array


make_mask ( data, level )
   Make mask from double array.

Parameters:
   data - reference data, numpy 2D double array
   level - threshold level, double

Return values:
   mask - mask, numpy bool array


zernike_surface ( z, mask )
   Generate surface using Zernike coefficients. Surface shape is equal to mask shape

Parameters:
   z - Zernuke coefficients, numpy double array
   mask - mask, numpy bool array

Return values:
   surface - surface, numpy double array


zernike_matrix ( mask, n )
   Generate matrix of Zernike surfaces. Surface shape is equal to mask shape

Parameters:
   mask - mask, numpy bool array
   n - number of Zernike polynomials, positive integer

Return values:
   matrix - matrix of Zernike surfaces, numpy double array


interferogram ( sc, phase, max, mask, surface )
   Generate interferogram for given surface. Image shape is equal to mask and surface shapes

Parameters:
   sc - scale coefficient, float
   phase - phase shift, float
   max - maximal value in result array, positive integer
   mask - mask, numpy bool array
   surface - surface, numpy double array

Return values:
   frame - image, numpy uint16 array


phase ( images )
   Calculate phase map from images. Phase map shape is equal to shapes of images

Parameters:
   images - images, list of uint16 arrays (must have 4, 5 or 7 elements)

Return values:
   phase - phase map, numpy double array


phase5 ( images )
   Calculate phase map from 5 images. Phase map shape is equal to shapes of images

Parameters:
   images - images, list of uint16 arrays (must have 5 elements)

Return values:
   phase - phase map, numpy double array


unwrap ( mask, phase, level )
   Unwrap phase map. Surface shape is equal to phase map

Parameters:
   mask - mask, numpy bool array
   phase - phase map, numpy double array
   level - threshold level

Return values:
   surface - surface, numpy double array


wrap( surface, level )
   Create phase map from surface. Phase map shape is equal to surface shape

Parameters:
   surface - surface, numpy double array
   level - threshold level

Return values:
   phase - phase map, numpy double array


binning ( data, bc )
   Make array binning.

Parameters:
   data - numpy double array
   phase - binning coefficient, positive integer

Return values:
   result - numpy double array

calibrate

Python extension package for interferogram analysis implements PZT calibration.

Functions

calibrate ( port, umax, p, n, verb = False, sve = False )
   This function implements PZT calibration. FFT is used as phase detection algorithm. The calibration refers to vertical interference fringes of flat surface.

Parameters:
   port - dtcam object
   umax - normalized maximal PZT voltage, float in fange from 0. to 1.
   p - number of acquired points, positive integer
   n - number of measurements, positive integer
   verb - verbose output, boolean
   sve - save intermediate results, boolean

Return values:
   res - result of operation, True if success
   list - normalized calibrated PZT voltages, list of floats in fange from 0. to 1.

phase

Python extension package for interferogram analysis, implements functions to get images and phase maps from DTI interferometers.

Functions

get_frame ( port, shift, verb = False )
   This function captures one frame with desired phase shifting

Parameters:
   port - dtcam object
   shift - normalized PZT voltage, float in fange from 0. to 1.
   verb - verbose output, boolean

Return values:
   frame - image, numpy uint16 array


get_phase ( port, ref, verb = False, sve = False )
   This function captures frames and calculates phase map

Parameters:
   port - dtcam object
   ref - reference points for phase shifting, list of floats in range from 0. to 1.
   verb - verbose output, boolean
   sve - save intermediate results, boolean

Return values:
   phase - phase map, numpy float array


get_phase_dev ( port, ref, verb = False, sve = False )
   This function gets phase map using device build-in phase calculation algorithm

Parameters:
   port - dtcam object
   ref - reference points for phase shifting, list of floats in range from 0. to 1.
   verb - verbose output, boolean
   sve - save intermediate results, boolean

Return values:
   phase - phase map, numpy float array

zernike

Python extension package for interferogram analysis implements Zernike coefficients calculation algorithms.

Functions

fast_zernike_coefficients( m, s, n, verb = False )
   This function tries first to reduce data size and then it calculates Zernike coefficients.

Parameters:
   m - mask, numpy bool array
   s - surface (opd), numpy float array
   n - number of polynomials, positive integer
   verb - verbose output, boolean

Return values:
   z - Zernike coefficients, numpy bool array


zernike_coefficients( m, s, n )
   This function calculates Zernike coefficients for a given surface

Parameters:
   m - mask, numpy bool array
   s - surface (opd), numpy float array
   n - number of polynomials, positive integer

Return values:
   z - Zernike coefficients, numpy bool array

dti

dti.py is a command line script and usage example of interferogram analysis package. It provides basic acquisition and calculation operations.

Usage

dti <command> [options...]

  command          frame|calibrate|phase|phasedev|opd

  common options
    -h, --help     print this message
    --device       device name
    --save-prefix  save file prefix
    --save-data    save data (npy and pgm file formats)
    --save-error   save error (text file format)
    --save-all     save all intermediate results
    -n             repeat command
    -v             verbose output

  commsnd-dependent options
    -a             make data averaging
    --pzt-max      normalized maximal PZT voltage in range from 0. to 1.
    -pzt-ref       load normalized calibrated PZT voltages from file
                   (use .npy file extension)
    --mask         load mask from file (use .npy file extension)
    --zernike      calculate Zernike polynomial coefficients

  capture frame
    command        frame
    options        -a, <common options>

  calibrate PZT
    command        calibrate
    options        --pzt-max, <common options>
	
  capture frames and calculate phase map
    command        phase
    options        --pzt-ref, <common options>
	 
  get phase map from device (DTI build-in algorithm)
    command        phasedev
    options        --pzt-ref, <common options>

  calculate opd (surface reconstruction)
    command        opd
    options        -a, --pzt-ref, --mask, --zernike, <common options>

  generate report from saved opd
    command        report
    options        none

Examples

Capture frame from device and save result.
dti.py frame --save-data
Calibrate PZT (normalized maximal PZT voltage 0.85) and save reference values
dti.py calibrate --pzt-max=0.85 -a5 --save-data
Get phase map using device build-in algorithm.
dti.py phasedev --pzt-ref=test_calibrate_0.npy --save-data
Get 4 phase maps, calculate OPD and Zernike polynomials coefficients.
dti.py opd --pzt-ref=test_calibrate_0.npy --zernike=16 --save-data --save-error -a4
Stability test. Calculate and save rms deviation of 20 sequential measured OPDs
dti.py opd --pzt-ref=test_calibrate_0.npy -n20 --save-error
Create pdf report
dti.py report test_opd_0.npy test_opd_0.pdf

Installation

Installation for Linux (Debian)

  1. Download IAPACK
  2. Extract it with root permission. For example: sudo tar -C / -xvf iapack-0.3.linux-i686-py2.7.tar.gz

Requirements

Python 2.7 programming language (Python 2.6 for old versions)
Numpy 1.5.1 (fundamental package needed for scientific computing with Python)

Links

Python (programming language) http://www.python.org
Numpy (fundamental package needed for scientific computing with Python) http://numpy.scipy.org

© 2010-2016 DENKTECH® | Home | Products | Tools | Downloads | Contacts |